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Abstract

A method is presented to determine the omni-directional and directional far-field pressures radiated by cylindrical

transducer arrays in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement

continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The

displacement of the surface of each piston transducer is in the direction of the normal to the array and is assumed to be

uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array

vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that

the uniform displacement required for generating a source level of 220 dB ref. mPa at 1m that is omni-directional in the

azimuthal plane is in the order of 1mm for typical arrays. Numerical results are presented to show that there is only a small

difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Cylindrical arrays of underwater electroacoustic transducers [1] can be used to radiate acoustic pressure that
is omni-directional in the azimuthal plane or appears to emanate from a planar array. In this paper, an
analytical method is presented to determine the omni-directional far-field pressure radiated by a full array of
pistons and the directional far-field pressure radiated by a sector of the array.

Methods used to study acoustic radiation from underwater structures can be extended to study arrays.
Analytical methods have been used to study forced vibrations of fluid-loaded cylindrical shells. In the first
step, the displacement on the surface is specified and used to determine the self and mutual radiation
impedances [2,3]. In the second step, the force on the structure is specified and the non-uniform displacement
of the fluid-loaded structure is determined by using the radiation impedances which embody all the effects of
the fluid [4,5]. Then, in the third step, the displacement is used to determine the far-field pressure [6].

The three-step approach can be extended, as follows, to develop an analytical model of a cylindrical array of
transducers. The transducers are electrically driven by applying voltage. The displacement on the face of each
transducer is approximately uniform because the face of the transducer is small with respect to a wavelength in
water but depends, unless controlled, on the location of the transducer in the array. Therefore, in the first step,
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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the self and mutual radiation impedances of pistons in an infinite rigid cylindrical baffle [7,8] are determined.
In the second step, the displacements of the radiating faces of the fluid-loaded transducers in response to the
electrical excitation are determined by using the radiation impedances that embody all the effects of the
surrounding water. The far-field radiated pressure due to the non-uniform displacement is of final interest and
is determined in the third step.

Alternatively, numerical methods can be used to simultaneously solve the governing equations in the water
and the transducers but these are not without difficulties. Lam [9] analyzed an array of Tonpilz transducers.
Benthien [10] presented model and experimental results for a linear array of three flextensional transducers.
He showed that the center transducer will ‘‘take in’’ power at some frequencies—where the radiation
resistance is negative.

It is not necessary to model the transducer if it is assumed that the displacement of each transducer is
known. This assumption was made by Laird and Cohen [11] who studied radiation from one piston source in
an infinite rigid cylindrical baffle, Rolleigh et al. [12] who compared the theoretical vertical beam pattern
radiated by a cylindrical array with experimental results and suggested a method to suppress vertical side-
lobes, and by Ebenezer [13] who studied directional radiation from a sparse array of piston transducers used
for underwater communication and obtained good agreement with experimental results. This assumption can
be dropped if the displacement of each piston is calculated using steps one and two described above.

In this paper, a method is presented to determine the pressure radiated by a cylindrical array of piston
transducers with uniform displacement on the face of each transducer. It is assumed that the array is in an
infinite, rigid, cylindrical baffle. In the present analysis, all the pistons in the same column or stave vibrate in-
phase but the more general case of each piston vibrating with a different displacement can also be analyzed
using the same method. First, an analysis of the pressure radiated by adjacent staves vibrating in-phase is
presented primarily to introduce various definitions, sign conventions, and assumptions used later in the
phased-array analysis. This analysis was first presented by Laird and Cohen [11] and used by Rolleigh et al.
[12]. Then, the effect of phase shading on the maximum pressure and the beamwidth are presented. Phase
shading is used in directional transmission [14] to increase the on-axis pressure. The method of stationary
phase is used to determine the far-field pressure and numerical results are presented to illustrate the
applications.
2. Theory

Consider a cylindrical array of electroacoustic piston transducers as shown in Fig. 1. The radius of the array
is a. There are M transducers in the circumferential direction and each subtends an angle 2p/M at the center.
ψ

Fig. 1. Schematic of a cylindrical array of transducers. Each square on the curved surface of the cylinder represents the radiating face of

one transducer. The radius and length of the array are a and 2L, respectively. There are M transducers in the circumferential direction.

c ¼ 2p=M is the angle subtended by each stave at the center. Each stave has N transducers in the vertical direction. It is assumed that the

array is in an infinite, rigid, cylindrical baffle that is not shown.
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The height of the array is 2L and there are N transducers in the vertical direction. It is assumed that the array
is in an infinite, rigid, cylindrical baffle. The density and speed of sound in the surrounding water are r and c,
respectively.
2.1. In-phase radiation from transducers

Consider first the case where JpM adjacent staves vibrate uniformly with the same displacement and in-
phase. Each stave consists of N transducers in the vertical direction. The surface of the rigid baffle does not
vibrate even though the vibration of the transducers causes acoustic waves in the surrounding water.
Therefore, the radial component of displacement on the surface of the cylinder is expressed in the cylindrical
co-ordinates (r, f, z) shown in Fig. 2 as

Uðr;f; zÞ ¼
U0; jzjpL; r ¼ a; jfjpf0;

0 otherwise;

(
(1)

where U0 is the amplitude and f0 ¼ pJ=M. The term e�jot where t denotes time and o is the angular frequency
is suppressed in all the equations for convenience.

The radial component of displacement on the surface of the transducers and the baffle is equal to the radial
component of displacement in the water at r ¼ a for all z. This continuity condition is used to determine
coefficients in the solution to the Helmholtz wave equation that governs acoustic waves in fluids. The
continuity condition can be satisfied at a large but finite number of points with various values of z on r ¼ a.
Alternatively, it can be satisfied in wavenumber—frequency space. The radial component of displacement is
discontinuous at |z| ¼ L because only the transducers vibrate and the baffle is rigid. Therefore, the second
approach is used here.

A spatial Fourier transform pair is defined as

ĤðkzÞ ¼

Z 1
�1

HðzÞ ejkzz dz,

HðzÞ ¼
1

2p

Z 1
�1

ĤðkzÞ e
�jkzz dkz, (2)

where kz is the wavenumber. Then, transforming Eq. (1) in the axial direction and expanding it using Fourier
series in the f direction yields

Ûðr;f; kzÞ ¼ 2U0
sinðkzLÞ

kz

X1
n¼0

an cosðnfÞ, (3a)
φ, ϕ

θ

R

r

z

Fig. 2. The cylindrical coordinate system ðr;f; zÞ and the spherical coordinate system ðR; y;jÞ used in the analysis.
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where

an ¼
f0=p; n ¼ 0;

2 sinðnf0Þ=ðnpÞ; n ¼ 1; 2; . . . :

(
(3b)

The solution to the Helmholtz wave equation, in cylindrical coordinates, is expressed in wavenumber—
frequency space as

P̂ðr;f; kzÞ ¼
X1
n¼0

PnðkzÞLnðbrÞ cosðnfÞ, (4a)

where

LnðbrÞ ¼

H ð1Þn ðbrÞ; b real and positive; k40;

Hð2Þn ðbrÞ; b real and negative; k40;

KnðZrÞ; Z2 ¼ �b2; b imaginary;

8><
>: (4b)

where P denotes pressure, b ¼ ðk2
� k2

zÞ
0:5, k ¼ o=c is the angular wavenumber, H ðiÞn ð:Þ is the nth order Hankel

function of the ith kind, and Knð:Þ is the nth order modified Bessel function of the second kind. It is noted that
the solution satisfies the Sommerfield radiation condition [15].

The radial displacement on the surface of the array is equal to the radial displacement in the water.
It, therefore, follows that

Ûðr;f; kzÞ ¼
�1

ro2

qP̂ðr;f; kzÞ

qr
, (5)

where the convention that extensional pressure is positive is used. Substituting Eqs. (3) and (4) in
Eq. (5) yields

PnðkzÞ ¼ �2ro2U0
sinðkzLÞ

kz

an

bL0nðbaÞ
. (6)

The pressure is then determined by substituting Eq. (6) in Eq. (4a) and evaluating the inverse Fourier
transform:

Pðr;f; zÞ ¼
�ro2U0

p

Z 1
�1

sinðkzLÞ

kz

X1
n¼0

LnðbrÞ

bL0nðbaÞ
an cosðnfÞ e�jkzz dkz, (7)

where prime denotes derivative with respect to the argument.
P(r, f, z) should be an even function of z when U is an even function of z. This is seen to be the case when

P̂ðr;f; kzÞ is an even function of kz. Therefore, it is assumed that b is real and positive when jkzjok. It then
follows from Eqs. (7) and (4) that

Pðr;f; zÞ ¼
�ro2U0

p
X

Z �k

�1

sinðkzLÞ

kz

X1
n¼0

KnðZrÞ

ZK 0nðZaÞ
an cosðnfÞ e�jkzz dkz

(

þ

Z k

�k

sinðkzLÞ

kz

X1
n¼0

H ð1Þn ðbrÞ

bH ð1Þ
0

n ðbaÞ
an cosðnfÞ e�jkzz dkz

þ

Z 1
k

sinðkzLÞ

kz

X1
n¼0

KnðZrÞ

ZK 0nðZaÞ
an cosðnfÞ e�jkzz dkz

)
. (8)
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The pressure in the far field is of primary interest. Using the large argument approximation for KnðZrÞ and
H ð1Þn ðbrÞ yields

Pðr;f; zÞ ¼
�ro2

p
U0

X1
n¼0

an cosðnfÞX
p
2r

� �0:5 Z �k

�1

sinðkzLÞ

kz

e�Zr

Z1:5K 0nðZaÞ
e�jkzz dkz

�

þ
2

pr

� �0:5 Z k

�k

sinðkzLÞ

kz

ejðbr�kzzÞ

b1:5H ð1Þ
0

n ðbaÞ
e�jð2nþ1Þp=4 dkz

þ
p
2r

� �0:5 Z 1
�k

sinðkzLÞ

kz

e�Zr

Z1:5K 0nðZaÞ
e�jkzr dkz

�
. (9)

In the far field, r is very large and the first and third integrals in Eq. (9) are neglected because they contain
exponentially decaying terms. The expression for pressure then reduces to

Pðr;f; zÞ ¼
�ro2

p
U0

2

pr

� �0:5X1
n¼0

ane
�jð2nþ1Þðp=4Þ cosðnfÞ

Z k

�k

Gnðr;f; z; kzÞdkz, (10a)

where

Gnðr;f; z; kzÞ ¼
sinðkzLÞ

kz

ejðbr�kzzÞ

b1:5H ð1Þ
0

n ðbaÞ
(10b)

and is evaluated by using the method of stationary phase. The primary contribution to the integral comes from
kz ¼ kz=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

and the approximation made by neglecting the first and third integrals in Eq. (9) is,
therefore, justified. Finally, the pressure in the far field is expressed as

Pðr;f; zÞ ¼
j2ro2U0

p

sin
kzLffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� �
kzffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ z2
p

� � ejkððr
2�z2Þ=ð

ffiffiffiffiffiffiffiffiffiffi
r2þz2Þ
p

Þ

kr

X1
n¼0

ane
�jnp=2

H ð1Þ
0

n

kraffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� � cosðnfÞ. (11)

The pressure in the plane midway between the ends of the cylindrical array (z ¼ 0) is of primary interest. In
this plane, the above expression reduces to [11]

Pðr;f; z ¼ 0Þ ¼
j2rcLoU0

pr
ejkr
X1
n¼0

an

e�jnp=2

H ð1Þ
0

n ðkaÞ
cosðnfÞ. (12)

Consider now the special case where all the transducer staves are vibrating in-phase, i.e. J ¼M and f0 ¼ p.
This corresponds to omni-directional radiation in the azimuthal plane from the array. Substituting an ¼ 0 for
n ¼ 1, 2,y for this case and j ¼ 0 in Eq. (12) to determine the pressure in the direction of the normal to the
surface of cylinder yields

Pðr;f ¼ 0; z ¼ 0Þ ¼
j2rcLoU0

pr

ejkr

H
ð1Þ0

0 ðkaÞ
. (13)

When ka is small, Eq. (13) reduces to

Pðr;f ¼ 0; z ¼ 0Þ ¼ rA0S
ejkr

4pr
, (14a)
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where A0 ¼ �o2U0 is the acceleration on the surface and S is the surface area of the radiator. The expressions
for far-field pressure on the axis of circular and rectangular pistons:

PðR; p=2;jÞ ¼ rA0S
ejkR

2pR
(14b)

and spheres

PðR; p=2;jÞ ¼ rA0S
ejkR

4pR
(14c)

are similar. S ¼ 4paL in Eq. (14a) and 4pb2 in Eq. (14c) where b is the radius of the sphere. It is noted that the
radiated pressure, at low frequencies, is independent of frequency and proportional to the uniform
acceleration and surface area.

When ka is large, as is usually the case in arrays, Eq. (13) reduces to

Pðr;f ¼ 0; z ¼ 0Þ ¼ ð1þ jÞ

ffiffiffiffiffi
ac

p

r
rLo3=2U0

r
ejkr. (15)

Eq. (15) shows that there is a 9 dB increase per octave in the radiated pressure when the displacement on the
surface of the cylinder is independent of frequency. However, in transducers, the displacement on the surface
will increase when the frequency is less than the resonance frequency of the transducer and decrease after
reaching a maximum. Therefore, Eq. (15) shows that the bandwidth of the transducer is increased in the upper
sideband by the increase in the radiation efficiency of the cylindrical array.
2.2. Phased radiation from transducers in a sector

Consider now the case where the amplitude and phase of vibration of each stave is independently controlled
but the displacement is uniform on the surface of each stave. This is done to simulate radiation from a
rectangular array or generate a beam pattern with a desired shape in the azimuthal direction.

When J staves vibrate, the displacement on the surface of the cylinder is

Uða;f; zÞ ¼
XJ

m¼1

Umða;f; zÞ, (16a)

where

Umða;f; zÞ ¼
Am; jf� fmjpf0; jzjpL;

0 otherwise

�
(16b)

is the displacement of the mth stave, Am is complex and is used to control the amplitude and phase, fm is the
center of the mth stave, and f0 ¼ p=M.
Expanding the displacement in a Fourier series in the f-direction and using the Fourier transform in Eq. (2)

yields

Ûða;f; kzÞ ¼
XJ

m¼1

Ûmða;f; kzÞ, (17a)

where

Ûmða;f; kzÞ ¼ 2AmðoÞ
sinðkzLÞ

kz

X1
n¼0

½Bmn cosðnfÞ þ Cmn sinðnfÞ�, (17b)
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Bmn ¼

f0

p
; n ¼ 0;

2

np
cosðnfmÞ sinðnf0Þ; n ¼ 1; 2; . . .

8>><
>>: (17c)

and

Cmn ¼

0; n ¼ 0;
2

np
sinðnfmÞ sinðnf0Þ; n ¼ 1; 2; . . . :

8<
: (17d)

The appropriate form of the solution to the Helmholtz wave equation, in cylindrical coordinates and
wavenumber space is

P̂ðr;f; kzÞ ¼
X1
n¼0

½Pn cosðnfÞ þQn sinðnfÞ�LnðbrÞ. (18)

The coefficients Pn and Qn are determined by using the displacement continuity condition at the interface
between the cylinder and water in Eq. (5). Then, using Eq. (2) to determine the inverse Fourier transform of
(18) yields

Pðr;f; zÞ ¼
�ro2

p

Z 1
�1

sinðkzLÞ

kz

X1
n¼0

LnðbrÞ

bL0nðbaÞ

XJ

m¼1

AmðoÞ½Bmn cosðnfÞ þ Cmn sinðnfÞ� e�jkzz dkz. (19)

Now consider the case there the phase of each stave is controlled to simulate radiation from a rectangular
array. A top view of the radiating sector of the cylindrical array is shown in Fig. 3 where the axis of the array
passes through O. The J radiating staves are in the arc AB. Angle AOB is 2pJ=M. The center of the radiating
sector is C and angle AOC ¼ fc ¼ pJ=M. Let D be the center of the mth stave. Then, angle
AOD ¼ fm ¼ 2pðm� 0:5Þ=M.

In order to simulate radiation from a rectangular array whose width is equal to the chord AB and height is
2L, a phase delay that corresponds to the distance ED is applied to the mth stave. For convenience, an
additional delay that corresponds to the distance OF is applied to all the J staves. Therefore, the total delay
applied to the mth stave corresponds to ED+OF ¼ dm ¼ a cos(fm�fc) and Am ¼ U0 e

jkdm .
Fig. 3. Top view of the radiating sector of a cylindrical array. The transducers in the arc ACB radiate. Each stave is delayed by an

appropriate amount to simulate radiation from the chord AB. The delay applied to the mth stave with center at D is ED. An additional

delay OF is applied to all the staves. Therefore, the total delay is a cosðfm � fcÞ.
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Again, assuming that b is real and positive when |kz|ok, and using the far-field approximation yields

Pðr;f; zÞ ¼
�ro2

p
U0

XJ

m¼1

ejkdm

X1
n¼0

½Bmn cosðnjÞ þ Cmn sinðnjÞ�

�

Z �k

�1

sinðkzLÞ

kz

p
2Zr

� �1=2
e�Zr

ZK ð1Þ
0

n ðZaÞ
e�jkzz dkz þ

Z k

�k

sinðkzLÞ

kz

2

pbr

� �1=2
ej br�ð2nþ1Þp=4ð Þ

bH ð1Þ
0

n ðbaÞ
e�jkzz dkz

(

þ

Z 1
�k

sinðkzLÞ

kz

p
2Zr

� �1=2
e�Zr

ZK ð1Þ
0

n ðZaÞ
e�jkzz dkz

)
. (20)

Neglecting the first and third integrals in Eq. (20), using the method of stationary phase, and observing that

the primary contribution to the second integral in Eq. (20) comes from kz ¼ kz=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

Þ yields

Pðr;f; zÞ ¼
j2ro2U0

p
ejkððr

2�z2Þ=ð
ffiffiffiffiffiffiffiffiffiffi
r2þz2Þ
p

Þ

kr

sin
ðkzLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� �
ðkzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� �

�
X1
n¼0

e�jnp=2

H ð1Þ
0

n

kraffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2
p

� �XJ

m¼1

½Bmn cosðnjÞ þ Cmn sinðnjÞ� ejkdm . (21a)

In the plane midway between the ends of the cylindrical array (z ¼ 0) the pressure is expressed as

Pðr;f; z ¼ 0Þ ¼
j2rocLU0

pr
ejkr
X1
n¼0

e�jnp=2

H ð1Þ
0

n ðkaÞ

XJ

m¼1

½Bmn cosðnjÞ þ Cmn sinðnjÞ� ejkdm . (21b)

It is noted that the phased radiation only approximately simulates radiation from a rectangular piston
because the vibration of each stave is in the radial direction and not in the direction along OC in Fig. 3.

The pressure [15] in the far field of a rectangular piston, vibrating with uniform displacement U0, in an
infinite rigid baffle is also evaluated using the method of stationary phase. It is expressed, in spherical
coordinates ðR; y;jÞ shown in Fig. 4, as

PpðR; y;jÞ ¼
�2ro2U0

pR

sinðk sin y cos jLxÞ

k sin y cos j
sinðk sin y sin jLyÞ

k sin y sin j
ejkR, (22)
R

�

2Ly

2Lx

�

Fig. 4. Spherical coordinate system ðR; y;jÞ for radiation from a rectangular piston of sides 2Lx and 2Ly [15]. y ¼ 0 along the axis of the

piston.
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where 2Lx is the width and 2Ly is the height of the rectangular piston. The pressure along the axis of the piston
is determined by using y ¼ 0 and reduces to Eq. (14b). The pressures radiated by the phased sector and the
rectangular piston are compared in the next section.
3. Numerical results and discussions

Numerical results are presented for arrays A and B. Details of the arrays are presented in Table 1. The radii
of the arrays are chosen to illustrate the effect of the normalized operating frequency on the radiated patterns.
The speed of sound in water is c ¼ 1500m/s and the density of water is r ¼ 1000 kg/m3. After checking for
convergence, all numerical results obtained using Eq. (21b) have been computed by replacing the infinite sum
by the sum of the first 25 terms.

The stationary phase method is used to evaluate the integrals. The function Gnðr;f; z; kzÞ in Eq. (10b) is
shown in Fig. 5 to illustrate the rapid oscillations except near the stationary phase point: kz ¼ 0. The
oscillations justify the assumption that the integral can be evaluated if the behavior of the function near the
stationary phase point is known.

First, consider array A. The required source level (SL) of the array is specified to be 220 dB ref. mPa at 1m in
the omni-directional mode. It follows from Eq. (13) that the amplitude of displacement, U0, is 0.996 mm. It is
useful to note that the hydrostatic pressure due to a 10m water column is about 105 Pa which is the acoustic
pressure corresponding to 220 dB ref. mPa.

Consider, next, the case where only nine of the 30 staves vibrate with the displacement required to generate
220 dB in the omni-directional mode. The staves in the sector vibrate in-phase and the radiation is directional.
It follows from Eq. (12) that the SL on the axis of the sector is 221.4 dB. The directivity pattern for this case is
shown in Fig. 6a. The maximum does not occur on the axis of the sector but at 7301. When the number of
Table 1

Characteristics of arrays.

Array Radius a (m) Length 2L (m) No. of staves Operating frequency (kHz) Normalised operating frequency ka

A [16] 0.365 0.635 30 10.5 16.1

B 0.4775 1 32 9, 7.5, 6 18, 15, 12

Fig. 5. The function Gn, in Eq. (10b), that is integrated using the method of stationary phase for array A, f ¼ 10.5 kHz, n ¼ 0, r ¼ 200m,

z ¼ 0, and j ¼ 0. There are rapid oscillations except near the stationary phase point: kz ¼ 0.
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Fig. 6. Directivity patterns, in dB, due to in-phase vibration of (a) nine and (b) 11 staves out of 30 staves in array A at 10.5 kHz.

Fig. 7. Pressure radiated at 10.5 kHz by phased vibration of nine staves in array A (solid line) and a corresponding rectangular piston

(dashed line).

P.A. Nishamol et al. / Journal of Sound and Vibration 323 (2009) 989–1002998
staves is increased to 11, the maxima occur at 01 and at 7401 and the SL increases slightly to 221.5 dB as
shown in Fig. 6b.

Consider, next, the case of phased radiation from nine of the 30 staves in array A. The delays are chosen to
simulate radiation from a rectangular piston. The displacement amplitude is again 0.996 mm. The radiated
pressure in the azimuthal plane is computed using Eq. (21b) and shown in Fig. 7 using a solid line. For
comparison, the pressure radiated by a corresponding rectangular piston is computed using Eq. (22) and
shown in Fig. 7 using a dashed line. The piston is mounted in an infinite rigid baffle and vibrates with the same
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Fig. 8. Pressure radiated at 10.5 kHz by phased vibration of 11 staves in array A (solid line) and a corresponding rectangular piston

(dashed line).

Fig. 9. Pressure radiated at 9 kHz by phased vibration of 11 staves in array B (solid line) and a corresponding rectangular piston

(dashed line).

P.A. Nishamol et al. / Journal of Sound and Vibration 323 (2009) 989–1002 999
displacement. The length, 0.635m, of the rectangular piston is equal to the length of the cylinder. Its width,
0.591m, is equal to the length of the chord, AB, in Fig. 3. It is seen that the on-axis radiated pressure is
228.5 dB for the cylindrical sector and is a little more than the 228.2 dB radiated by the rectangular piston. The
3 dB beamwidths of the cylindrical sector and the piston are 12.151 and 12.31, respectively. The main lobe of
the cylindrical sector is a little wider and the side lobes are a little lesser than that of the piston. The piston does
not radiate any energy behind the baffle but the sector radiates some energy in all directions.
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Fig. 10. Pressure radiated at 7.5 kHz by phased vibration of 11 staves in array B (solid line) and a corresponding rectangular piston

(dashed line).

Fig. 11. Pressure radiated at 6 kHz by phased vibration of 11 staves in array B (solid line) and a corresponding rectangular piston

(dashed line).
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Phased radiation by 11 staves in array A is shown in Fig. 8. The pressure on the axis is 229.8 dB and a little
more than that radiated by nine staves. The beamwidth decreases to 10.51. The on-axis pressure and
beamwidth for the corresponding piston are 229.3 dB and 10.91, respectively.

Consider, next, radiation from array B at 9 kHz. The displacement amplitude required for generating omni-
directional SL of 220 dB ref. mPa at 1m is 0.697 mm. The on-axis pressure when 11 of the 32 staves vibrate in-
phase with this amplitude is 221.6 dB. The pressure due to phased radiation from 11 of the 32 staves designed
to simulate radiation from a piston is shown in Fig. 9. The on-axis pressure is 229.8 dB. It is seen that the
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Table 2

Displacements and on-axis pressures for the arrays.

Array A B B B

Frequency (kHz) 10.5 9 7.5 6

Displacement (mm) corresponding to 220 dB omni-pressure in azimuth 0.996 0.697 0.916 1.281

On-axis pressure due to phased radiation from sector (dB) with same

displacement. Eleven staves are excited

229.8 229.8 229.4 228.7

On-axis pressure due to radiation into half-space from corresponding

rectangular piston with same displacement (dB)

229.3 229.5 228.7 227.7
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difference between the omni and phased radiation is 9.8 dB. The on-axis pressure radiated by the
corresponding rectangular piston is 229.5 dB and is only a little lower than that radiated by the phased sector.

Consider, next, radiation from array B at 7.5 kHz. The displacements required for generating omni-
directional pressure of 220 dB ref. mPa at 1m is 0.916 mm. The on-axis pressure when 11 of the 32 staves vibrate
in-phase with this amplitude is 221.9 dB. The pressure due to phased radiation from 11 of the 32 staves
designed to simulate radiation from a piston is shown in Fig. 10. The on-axis pressure is 229.4 dB and is nearly
the same as the corresponding pressure for array B. The on-axis pressure radiated by the corresponding
rectangular piston is 228.7 dB and is only a little lower than that radiated by the phased sector.

Consider, finally, radiation from array B at 6 kHz. The displacement amplitude required for generating
omni-directional pressure of 220 dB is 1.281 mm. The on-axis pressure when 11 of the 32 staves vibrate in-phase
with this amplitude is 221.3 dB. The pressure due to phased radiation from 11 of the 32 staves designed to
simulate radiation from a piston is shown in Fig. 11. The on-axis pressure is 228.7 dB. The on-axis pressure
radiated by the corresponding rectangular piston is 227.7 dB and is lower than that radiated by the phased
sector.

The displacements required to generate omni-directional pressure of 220 dB are summarized in Table 2.
The on-axis pressures due to phased radiation with the same displacements are also shown. It is seen from the
results for array B that the required displacement is higher at lower frequencies. As noted earlier, the on-axis
pressure for the sector is only a little greater than that for the corresponding rectangular piston. This is due to
the larger radiating area of the sector.

4. Conclusions

A method is presented to determine the omni-directional and directional far-field pressures radiated by
cylindrical arrays of transducers. The transducers vibrate in the direction of the normal to the array surface
and the effect of this is included in the model. Numerical results are presented for the array described by
Morris operating at 10.5 kHz and another array operating at 9, 7.5, and 6 kHz.

Numerical results are used to show that the displacement on the surface of the array required to generate
220 dB ref. mPa at 1m in the omni-directional mode is of the order of 1 mm. Therefore, great care should be
taken to ensure that there is no gap between the components used to assemble transducers. Stansfield
recommends the use of rigid adhesives at all joints [1].

The pressure generated by in-phase radiation of transducers in a sector is also analyzed. Numerical results
show that the on-axis SL is about 221 dB when about one-third of the array is radiating and the displacement
is equal to that required to generate 220 dB in the omni-directional mode. The maximum, in this case, does not
always occur on the axis because the radiating surface is curved. This is in contrast to radiation from a planar
piston radiator of any shape where the maximum always occurs on the normal to the plane because all points
on the radiator are equidistant from a point at infinity and on the normal.

Phased radiation of the type used in directional transmissions is also analyzed. The amplitude of the
displacement remains the same and the phase is controlled to approximately simulate radiation from a
rectangular piston. The displacement is along the normal to the curved surface. The assumption that the
radiator is in an infinite cylindrical baffle is used and it is, therefore, not necessary to assume that the power is
radiated into a half-space. However, it is seen from Table 2 that there is no significant difference between the
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on-axis pressure radiated by a cylindrical sector in an infinite cylindrical baffle and a rectangular piston in an
infinite rigid planar baffle. This is also seen in Figs. 7–11 where the beamwidth is nearly the same for the two
cases and the pressure radiated in the rear sector is very small. The on-axis pressure radiated by the sector is a
little greater than that radiated by the piston because of the slightly larger radiating area.
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